
Towards Verified Java Code Generation
from Concurrent State Machines

Dan Zhang Cornelis Huizing
Dragan Bosnacki Ruurd Kuiper
Mark van den Brand Anton Wijs
Luc Engelen

Outline

PAGE 1

 A model specification language: Simple Language of
Communication Objects (SLCO) based on finite state machines

 Automated transformation from SLCO model to code (Java).

 Verification of the transformation (work in progress)

 Conclusion

 Setting the scope

Setting the Scope

PAGE 2

Executable
Java Code

M1 SLCO

Code Generation
Language

Verification using formal methods

Model Transformation
Language

M2 SLCO Generator Mn SLCO

Chain of model transformations
current work

Simple Language of Communication
Objects (SLCO)

PAGE 3

 SLCO is a small domain-specific modeling language

 SLCO models are collections of concurrent objects

 The dynamics of objects is given by state machines

 The state machines can communicate via
• Shared memory(class variables)
• Message passing(channels)

Q {

}
objects
 p: P
 q: Q
channels

}

model PaperExample1 {
 classes
 P {

 }

An SLCO Model Using the Textual Syntax

PAGE 4

 variables
 Integer m = 0

ports
 In1 In2 InOut
 state machines
 Rec1 {

 }

variables Boolean v = true
initial Rec1
transitions
 Rec102Rec1 from Rec1 to Rec1 {
 receive P(v| v == false) from In1
 }
}

 Rec2 {
 initial Rec2a
 state Rec2b
 transitions
 Rec2a2Rec2b from Rec2a to Rec2b {
 receive P(m| m >= 0) from In2
 }
 Rec2b2Rec2a from Rec2b to Rec2a {
 m := m+1
 }
 }
SendRec {…}

ports
 Out1 Out2 InOut
state machines
 Com {
 variables String s = ""
 initial Com0
 state Com1 Com3 Com4
 final
 Com2
 transitions
 Com02Com1 from Com0 to Com1 {
 send P(true) to Out1
 }…
 Com02Com2 from Com0 to Com2 {
 after 5 ms
 }
 }

c1(Boolean) async lossless from q.Out1 to p.In1
c2(Integer) async lossless from q.Out2 to p.In2
c3(String) sync between q.InOut and p.InOut

Channels

PAGE 5

In1

In2

InOut

Out1

Out2

InOut

p: P q: Q
c1 (Boolean) async lossless

from q.Out1 to p.In1

c2(Integer) async lossless

from q.Out2 to p.In2

c3(String) sync

between q.InOut to p.InOut

 Objects, instances of classes, communicate with each other via channels.
 SLCO offers three types of channels:

• Synchronous channel
• Asychronous lossless channel
• Asychronous lossy channel

Graphical Representation

PAGE 6

Rec1 receive P(v | v == false) from In1

Rec2b

receive Q(m | m >= 0) from In2

Rec2a

m := m+1

SendRec2

receive T(s| true) from InOut

SendRec0

m == 6

SendRec1

send T(“a”) to InOut

Com2

after 5 ms

Com0

send P(true) to Out1

Com1

send Q(5) to Out2

Com3

com4

receive S(s| true) from InOut

send T(s) to InOut

p: P q: Q

From SLCO Model to Java Code

PAGE 7

SLCO
Model

Java
executable

code

This part is created in the Epsilon
Generation Language (EGL) tailored for
model-to-text transformation.

Java specific
code

Java generic
code

+

Generator

Com {
 initial
 Com0
 state
 Com1 Com2 Com3
 final
 Com3
 transitions
 Com02Com1 from Com0 to Com1 {
 send P(true) to Out1
 }
 Com02Com2 from Com0 to Com2 {
 after 5 ms
 }
 Com12Com3 from Com1 to Com3 {
 …
 }
 Com22Com3 from Com2 to Com3 {
 …
 }
}

From SLCO Model to Generated Java Code

PAGE 8

State Machine Com
in Class Q

How should the states look like in Java?
• State machine structure preserving
• Understanding easy
• Verification feasible

String nextTransition;
String transitions[] =
 {"Com02Com1","Com02Com2"};
 …
int idx =
 new Random().nextInt(transitions.length);
nextTransition = transitions[idx];
 …
switch(nextTransition){
 case "Com02Com1":
 …
 case "Com02Com2":
 …
 }
}

String currentState = "Com0";
 switch(currentState){
 case "Com0":

 case "Com1":
 …
 case "Com2":
 …
 }

Java code

Non-deterministic
transitons

Generated Code from SLCO Model

PAGE 9

Sending Statement in SLCO Com42Com2 from Com4 to Com2 {
 send T(s) to InOut
}

case "Com4":
 try {
 port_InOut.channel.send("Com42Com2", new
 SignalMessage("T",new Object[]{s}), false);
 currentState = "Com2";
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 break;

The implementation of channel should be
hidden in the generic code.

• user
• verification

Generic Code Structure of Channels

PAGE 10

Generic Code of Asynchronous Channel

PAGE 11

Results

PAGE 12

Previous results

 Java channel implementation

 Java channel specification with Separation Logic

 Verified the channel using VeriFast tool

Current results

new generic code

 Verification oriented OO design

 Considering fairness

 More efficiency

• Java synchronization construct

Challenges

PAGE 13

Shared variables - atomicity

Rec2b

receive Q(m | m >= 0) from In2

Rec2b

m := m+1

SendRec2

receive T(s| true) from InOut

SendRec0

m == 6

SendRec1

send T(“a”) to InOut

In SLCO, the class variables can be accessed and /or modified by multiple
state machines.

 Locking constructs limit the number of threads that can perform
some activity.

 Signaling constructs used to let a thread pause until receiving a
notification from another thread.

Challenges

PAGE 14

Channels - synchronization

 Synchronous communication
• Both receiving and sending party need to be available

before a signal can be sent
• The condition of the signal should be satisfied

 Asynchronous communication

• The condition of the signal needs to be checked before
exchanging the message

 Aiming at a generic solution for conditional synchronous
and asynchronous communication

In SLCO, signals can be sent over synchronous channels and
asynchronous channels. Determining when both sender and
receiver are available for sending and receiving is difficult.

Challenges

PAGE 15

Conditional transition

Each statement in SLCO is either blocked or enabled. we need to find a
construct to simulate the blocking in Java
 busy-waiting
 Wait-notify
 ?

Rec2b

receive Q(m | m >= 0) from In2

Rec2b

m := m+1

SendRec2

receive T(s| true) from InOut

SendRec0

m == 6

SendRec1

send T(“a”) to InOut

Challenges

PAGE 16

Fairness

 We use an interleaving semantics for SLCO with weak fairness.
 if at some time point a transition becomes continuously

enabled, this transition will at some later time point be
taken.

 We need stronger fairness in Java.

 The granularity in Java is much finer than in SLCO, more
progress is enforced by weak fairness in SLCO than in
Java.

 We aim to achieve this through a combination of fairness in

 scheduling threads, obtained by choosing the right JVM
 fair locks, obtained from the package

java.util.concurrent.locks.

Challenges

PAGE 17

SLCO
Model

Java specific
code

Java generic
code

Java
executable

code
+

Generator

• Verification

Separation Logic Specification
in combination with the tool
Verifast

Generating annotation along
with the generated code to the
semantics of SLCO

Generalization

PAGE 18

Executable
Java Code M1 SLCO Mn SLCO

Model Transformation
Language

Code Generation
Language

Verification using formal methods

M2 SLCO Generator

A basis for developing efficient simulation, formal verification and other analysis tools

Concurrent
Model Semantics Generator Language

Patterns

Conclusion

PAGE 19

 Investigated fairness aspects of a model specification

 Changed automated transformation to more verification
oriented OO code

 Identified and presented tentative solutions to challenges

Questions

PAGE 20

Thank you very much!

	Towards Verified Java Code Generation from Concurrent State Machines
	Outline
	Setting the Scope
	Simple Language of Communication Objects (SLCO)
	�An SLCO Model Using the Textual Syntax�
	�Channels�
	Graphical Representation
	�From SLCO Model to Java Code�
	�From SLCO Model to Generated Java Code�
	�Generated Code from SLCO Model�
	Generic Code Structure of Channels
	Generic Code of Asynchronous Channel
	Results
	�Challenges�
	�Challenges�
	�Challenges�
	�Challenges�
	Challenges
	Generalization
	Conclusion
	Questions

